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Statistical Mechanics 
 
Distribution Functions 
 For f(something) that describes the distribution of a particle quantity over something (like the 
number of particles distributed over energy or location over a span of space), then 
 
 
 
 
  
 
The expectation value of something described by this distribution is 
 
 
 
Energy Distributions of Particles 
 To describe how the energy is distributed among particles in large collections (gases, liquids and 
solids), physicists developed different energy distributions based on the types of particles 
 
   
 
 
 
 
 
 
 
Maxwell-Boltzmann Statistics: Classical Particles 
 Classical particles are distinguishable, only interact with each other through elastic collisions and are 
at a low enough density that the wave functions don’t overlap. 
 The Maxwell-Boltzmann factor is 
 
Maxwell-Boltzmann Speed Distribution 
 The speed distribution of classical particles in a gas is  
 
 
 
 
which can be used to determine the root-mean-square speed 
 
 
 
 
that is the average preferred by physicists because it gives the familiar mean kinetic energy 
 
 
 

f(something) dsomething =  Probability of finding a particle between 
something and something + dsomething 

smart guysn(E)dE g(E)F=

number of particles with E < energy < E + dE [n(E) = number/energy …number energy density] 

smart guy factor expressing behavior of particle type: 
classical, Fermion, or Boson 

density of states (number of E < available energy states < E + dE 

f(x) dx =  = Probability of finding a particle with a location between x and x + dx 

f(E) dE =  = Probability of finding a particle with energy between E and E + dE 
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Over a small interval, an expectation value can be approximated by a product instead of an integral, 
 
 
 
Maxwell-Boltzmann Energy Density 
For an ideal gas, the density of states is the same as the number of particles, N, since a particle can have 
any energy, thus the number of particles with an energy between E and E + dE is 
  
 
 
 
so the fraction of particles with energies bewteen E and E + dE is this divided by N.  The expectation 
value of the energy is thus  
 
 
 
Classical vs. Quantum Statistics 
 Quantum statistics must be used if the particles are dense enough that their wave functions overlap.  
For N particles in a volume, V at temperature T, with a de Broglie wavelength, λ = h/p, gives the criterion 
for using classical statistics: 
 
 
 
Fermi-Dirac Statistics: Fermion Quantum Particles 
 Fermions have ½-integer spins and obey the Pauli Exclusion Principal stating that only one can occupy 
any quantum state.  The density of states for a Fermion gas is    
 
 
 
where the Fermi Energy, EF is the highest occupied state at T = 0 and 
is given by 
 
 
 
The Fermi temperature and velocity are then 
 
 
 
 
Fermi-Dirac Factor 
 The probability that a given state will be occupied is given by FFD: 
 
 
 
 
Which is equal to 1 for E < EF and zero for  E > EF.  Since FFD(T = 393K) is only slightly different from  
FFD(T = 0) = 1, we can work as though room temperature is equal to zero. 
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Fermi-Dirac Energy Density 
For metals such as Silver, with 5.86 x 1028 conduction electrons per meter, the Fermi Energy is quite 
large, 5.503 eV (8.82 x 10-19 J) which gives a Fermi Temperature of, kTF = EF ⇒ TF, Silver = 63,750K.  Since 
room temperature is so much smaller than this, we can consider that we work at T = 0.  Thus,  
 
 
 
Fermi-Dirac Electron Energies 
 In a metal, the Fermion gas is made up of the valence electrons with an average energy of E given by  
 
 
 
Since nFD(E > EF) = 0 and nFD(E < EF) is given by TRex (9.44), this 
becomes 
 
 
 
 From thermal energy, nexcited electrons will absorb ΔEexcoted   
 
 
 
Increasing the internal energy of the conductor to Uexcited giving CV, electrons   
 
 
 
Electrical Conductivity 
 Ohm’s Law, expressed in terms of the current density (C/m2) and electric field is 
  
 
where σ is the electrical conductivity.  In a conductor, this is modeled as 
a gas of electrons at high random velocities and a smaller “drift” velocity 
due to accelerating in response to the electric field. 
 In the classical Drude model, the electrons have a Maxwell-Boltzmann 
speed distribution and collide with every ion, giving a mean-free-path 
equal to the interatomic spacing, ℓ.  This gives an electrical conductivetity that is 10 times too small and 
depended on the inverse square root of the temperature instead of the inverse temperature. 
 
    
 
 
 
 
 
Einstein asserted that the electrons should move with the Fermi speed (above), that is about 10 times 
greater than the Maxwell-Boltzmann speed and not collide with every ion, but have a mean-free-path of 
100ℓ.  He included the dependence of the ion’s cross sectional area dependence on the temperatue to  
give the dependence on the inverse of the temperature.  This gave a value of σEinstein 10 times greater than 
σDrude and about equal to measured values. 
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Bose-Einstein Statistics: Boson Quantum Particles 
 Bosons have zero or integer spins and do not obey the Pauli 
Exclusion Principal, thus any number can occupy a given quantum 
state.   It was developed by Bose to put Planck’s blackbody 
radiation equation on statistical footing.  Other descriptions of 
the law were described by Wien, Stefan and Boltzmann. 
 
Wien Displacement Law 
 Describes how the wavelength of the maximum emission 
depends on temperature,  
 
  
Stefan-Boltzmann Law 
 Describes how the radiated flux through the surface of a blackbody depends on the temperature,  
 
 
where ε is the emissivity, the fraction of energy going into radiation, and the Stefan-Boltzmann constant 
is σ = 5.67 x 10-8 W/(m2K4). 
 
Bose-Einstein Energy Density 
 The Bose-Einstein factor does not have a normalization constant since some Bosons (e.g. photons and 
phonons) can come in and out of existence spontaneously, thus it is  
 
 
 
The density of states found by determining the number of energy states in a cube of side L where waves 
must have nodes at the boundaries is 
 
 
 
Thus, the energy density is 
 
 
 
But, to explain the Planck curve, we need the energy density distribution, the energy density per volume 
 
 
 
 
Converting this to an expression in wavelength using E = hc/λ gives   
 
 
 
 
The radiative energy is thus found to be Planck’s Radiation Law   
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Blackbody curves for 
Canopus (T=7,500K) and                            

the Sun (T=5,800K) 
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